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Abstract These techniques have been used to conduct searches on 2D multi-
media image databases.
There is a growing need to be able to accurately and efficiently =~ When dealing with 3D shapes, there are a number of techniques
search visual data sets, and in particular, 3D shape data sets. Thifor shape matching and feature extraction, for example, extract-
paper proposes a novel technique, callegology Matchingin ing features for a design in feature-based CAD/CAM applications
which similarity between polyhedral models is quickly, accurately, [14,[16,/35/38], computing a feature from images and matching
and automatically calculated by comparing Multiresolutional Reeb 3D models in a database for posture estimation or object search in
Graphs (MRGs). The MRG thus operates well as a search key for model-based vision [5. 40], and optimizing some measures for reg-
3D shape data sets. In particular, the MRG represents the skeletaistration of 3D shapes$ [2] 7]. However, these techniques are gen-
and topological structure of a 3D shape at various levels of resolu- erally restricted to their specific applications, and inadequate for a
tion. The MRG is constructed using a continuous function on the general 3D shape search.
3D shape, which may preferably be a function of geodesic distance  In order to contruct a 3D shape database, it is first necessary to
because this function is invariant to translation and rotation and is define a search key on the shapes. Curvature is a possible candidate
also robust against changes in connectivities caused by a mesh simfor this search key, and methods using curvature distribution have
plification or subdivision. The similarity calculation between 3D provided some good results for uses such as 3D shape pose esti-
shapes is processed using a coarse-to-fine strategy while preservingnation [11[ 18 22, 35. 39]. However, since curvature is associated
the consistency of the graph structures, which results in establish-with second order derivatives, these techniques are inadequate as a
ing a correspondence between the parts of objects. The similarity general search key because they are sensitive to noise and small un-
calculation is fast and efficient because it is not necessary to de-dulations on the object surface, even if a multiresolutional structure
termine the particular pose of a 3D shape, such as a rotation, inis introduced.
advance. Topology Matching is particularly useful for interactively  Other studies have used a global histogram as a search key for
searching for a 3D object because the results of the search fit humam database of 3D shapés [3] 29]. This type of search key is com-
intuition well. putationally stable and suitable for representing rough features of
shapes but cannot, however, estimate local features.

In order to handle global and local properties simultaneously,
the selected search key must include a concise representation of the
1 Introduction and Related Work shape, must catch the features of the shape well, and must be com-

puted automatically and robustly for a general 3D shape database.
Recent developments in modeling and digitizing techniques have In order to satisfy such conditions, we propose using a skeletal
made the construction of 3D computer models much easier. This Structure of a 3D shape as a search key. There have been many stud-
has led to an increasing accumulation of 3D models, both on the In- ies on the extraction of a skeleton from a 3D shape [8. B, 32, 41]
ternet and otherwise, and has highlighted the need for developmentfor use in various applications such as shape deformation, modeling
of an efficient technique for searching for a particular 3D object in and path planning.
a data set. This paper proposes a search method dalfsslogy One well-known skeletal structure is the medial axis model
Matchingthat efficiently, accurately, and automatically estimates a [4}(8,[9,[32/ 34]. However, this model is inappropriate as a search
measure of similarity and correspondence between 3D shapes.  key for 3D shapes because calculating the 3D version of a medial

When dealing with 2D images, techniques have been proposedaxis has a high computational cost and is sensitive to noise and
for recognizing a silhouette or contour curve using properties of small undulations. After examining various options, we have cho-
shape, such as curvature[L0] [15,[19/24[ 27, 34] or using propertiessen a skeleton structure called the Reeb graph as the basis for our
of image, such as color, texture or wavelet coefficient [12/ 17, 20]. search key. The Reeb graph, defined by Réeb [30], is a skeleton
determined using a continuous scalar function defined on an ob-
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The Reeb graph has a number of characteristics that make it use-
ful as a search key for 3D objects. First, a Reeb graph defined
appropriately always consists of a one-dimensional graph structure
and does not have any higher dimension components such as the de-
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Figure 1: Torus and its Reeb graph using a height function

(@
tion of geodesic distance. Finally, since a Reeb graph is associated Figure 2: Multiresolutional Reeb graph using a height function
with the value of a continuous function, it is possible to introduce a

multiresolutional structure. _ _ the red and blue coloring represents minimum and maximum val-

In Topology Matching, we propose a Multiresolutional Reeb o5 respectively, and the black lines represent the isovalued con-
Graph (MRG), which is constructed based on geodesic distance, asqoyrs. The Reeb graph in the right figure corresponds to connectiv-
asearch key. Our use of geodesic distance has been aided by the fag}, information for these isovalued contours.

that the computation of geodesic distance between two points has
been we_II _studiec\ [6, 21, 25,1728,131]. The geodesic-based MRG al- 2.2 Multiresolutional Reeb Graph
lows a similarity between 3D shapes to be calculated using a coarse-
to-fine strategy while preserving the topological consistency of the This subsection proposes a new Multiresolutional Reeb Graph
graph structures to provide a fast and efficient estimation of simi- (MRG). The basic idea of the MRG is to develop a series of Reeb
larity and correspondence between shapes. graphs for an object at various levels of detail. To construct a Reeb
In section 2, the Reeb graph is described and its extension to agraph for a certain level, the object is partitioned into regions based
Multiresolutional Reeb Graph (MRG) is proposed. The continu- on the functionu. A node of the Reeb graph represents a con-
ous function used for Topology Matching is defined in section 3. nected component in a particular region, and adjacent nodes are
Section 4 explains the implementation and the construction of the linked by an edge if the corresponding connected components of
MRG. Similarity estimation and its implementation are described the object contact each other. The Reeb graph for a finer level is
in section 5. Section 6 describes the results of an experiment usingconstructed by re-partitioning each region. In Topology Matching,
Topology Matching to search for a 3D object. The paper concludes the re-partitioning is done in a binary manner for simplicity. Fig-

in section 7 with a discussion of the results and future work. ure[3 shows an example where a height function is employed as the
function 11 for convenience of explanation. In Figdre 2(a), there is
2 Reeb Graph and Its Multiresolutional only one regionrg and one connected componeft Therefore,

. the Reeb graph consists of one nadewhich corresponds te,.
Extension In Figure[2(b), the regiom, is re-partitioned ta-; andrz, giving

2.1 Reeb Graph connected components andss in 71, andss in r2. The corre-

’ sponding nodes are:, n2 andns respectively. According to the

A Reeb graph is a topological and skeletal structure for an object connectivities ok, s2 andss, edges are generated betwegrand

of arbitrary dimensions. In Topology Matching, the Reeb graph is ns, and betweemn, andns. Finer levels of the Reeb graph are con-

used as a search key that represents the features of a 3D shape. Ttatructed in the same way as shown in Fidure 2(c). The MRG has

definition of a Reeb graph is as follows: the following properties:

Property 1: There are parent-child relationships between nodes of

function defined on an obje¢t. The Reeb graph is the adjacent levels. In Figu@ 2, the nodg is the parent oh,,

quotient space of the graph gfin C x R by the equiva- nz2 andns, and the node; is the parent ofi, andns, etc.
lent relation(X1, u(X1)) ~ (X2, u(X2)) which holds Property 2: By repeating the re-partitioning, the MRG converges
if and only if to the original Reeb graph as defined by Reeb. That is, finer

levels approximate the original object more exactly.
o 4(X1)=pu(X2),and i . L .
i Property 3: A Reeb graph of a certain level implicitly contains all

* X andX; are in the same connected component of the information of the coarser levels. Once a Reeb graph

of ™" (u(X1)). is generated at a certain resolution level, a coarser Reeb graph
can be constructed by unifying adjacent nodes. Consider the
construction of the Reeb graph shown in Figgre 2 (b) from that
shown i 2 (c) as an example. The nodes, n} are unified

Definition: Reeb graph Letx : C — R be a continuous

When the functionu is defined on a manifold and critical points
are not degenerate, the functipriis referred to as a Morse function,
as defined by Morse theory e.q., [33], however, Topology Matchin
is not subjec}t/to this restriréioﬁ. %) i ’ t0 n1, {ns, 7, ns} 10 n2, and{ng, nio, n11} to ns. Note

Itis clear that, if the functiop changes, the corresponding Reeb ] that the unified .nodes satisfy the pgrent-chlld relationship. o
graph also changes. Among the various typeg:aind related Using these properties, MRGs are easily constructed and a simi-
Reeb graphs, one of the simplest examples is a height function onlarity between objects can then be calculated using a coarse-to-fine
a 2D manifold. That is, the function returns the value of the z-  strategy of different resolution levels as described below.
coordinate (height) of the pointon a 2D manifold:

3 Definition of the Continuous Function  u

v(zr,y,z)) = z. .
oy, 2) for Topology Matching
Most existing studies have used the height function as the function
u for generating the Reeb graph [83| 1| 23,[36, 37]. A Reeb graph is always generated by a continuous fungtidha
Figure[] shows the distribution of the height function on the sur- different function is used as, the Reeb graph will change. Itis im-

face of a torus and the corresponding Reeb graph. In the left figure, portant that the functiom be carefully defined for the application
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Figure 5: Resampling and subdivision of a mesh

where the functiory(v, p) returns the geodesic distance between
v andp on S. This functiony(v) has no source point and hence
stable, and it represents the degree of center or edge on a surface.
Sincep(v) is defined as a sum of geodesic distance froto all
points onS, a small value means that a distance froto arbitrary
points on the surface is relatively small, that is, the poiigtnearer
the center of the object.

Here, note that the functigm(v) is not invariant to scaling of the
object. To handle this issue, a normalized versiop (@f) is used:

p(v) — minyes pu(p)
maxpes 1(p)

Mn(U) =

(d) In this normalizationrange(S) = maxpes p(p) — minges u(p)

may also be a candidate for the denominator, however it is not em-
ployed because it amplifies errors whemge(.S) is small, partic-
ularly in the case of a sphere, wherenge(S) = 0. The value
min,es pu(p) corresponds to a most central part of the object, and
a shift can be introduced to initially match the centers of different
objects when estimating similarity between them, as described be-
low.

Examples of the functiop., (v) defined on several primitive ob-
jects are shown in Figufg 3 where the coloring has the same mean-
ing as Figurd Jl. Notice that the sphere has a constant value of
un(v) = 0, and more asymmetric shapes have a wider range of
values foruy, (v).

The functionu,, (v) is particularly useful because it is resistant
to the type of deformation shown in Figyre 4. This is because the
deformation does not drastically change the geodesic distance on
the surface.

Thus, the normalized integral of geodesic distance is suitable as

in question. For example, in terrain modeling applications or when the continuous function for Topology Matching.
modeling a 3D shape based on cross sections such as CT images,
the height function has been a useful functiobecause these appli- 4 Construction of the Multiresolutional
cations are strictly bound by height. However, the height function is
not appropriate as a search key for identifying a 3D shape because it Reeb Graph
is not invariant to transformations such as object rotation. Though
the use of curvature as the functipmrmay provide invariance in a
rotation, it is also not appropriate for our purposes, because a stabl
calculation of curvature is difficult on a noisy surface, and small
undulations may result in a large change of curvature, causing sen-
sitivity in the structure of the Reeb graph. . S
Intz)/rderto define a functio that gve?comes such problems, we tatl?ns such as NURBS surfaces, meta-balls(blobby), subdivision
use geodesic distance, that is, the distance from point to point on aSurtaces, ete.
surface. Using geodesic distance provides rotation invariance and . A
resistance against problems caused by noise or small undulations#-1 Calculating the Integral of Geodesic Distance
In one case, Lazarust al. proposed a level set diagram (LSD)  \jethods for calculating an accurate geodesic distance have been
structure [[26] in which geodesic distance from a source point is \e|| stydied [6/ 21, 25, 28, 31], however, when calculating the in-
used as the functiop. However, in this case, the functignis tegral of geodesic distance using these methods, the computational
only suitable for constructing a reasonable set of cross sections of .« s quite high. Considering the trade off between computational
a 3D shape. To make a search key for 3D shapes, the source poinfg; and accuracy, we employ a relatively simple method in which
must be determined automatically and in a stable way, which is a 404 gesic distance is approximated by Dijkstra’s algorithm based on
difficult problem. For example, a small change in the shape may gqe |ength (described below). However, before using our proce-
result in an entirely different source point, creating an obstacle for dure, the mesh needs to be prepared.
the construction of a stable Reeb graph. _ In Topology Matching, because a value of the functjan is
In order to avoid these difficulties, we construct the functicat assigned to each vertex of the mesh, the algorithm will only work
a pointv on a surfaces' as follows: well if the distribution of the vertices is fine enough to represent
the distribution of the functiom.,, well. It is therefore sometimes
w(v) = / (v, p)dS 1) necessary to resample the vertices until all edge lengths are less
peES

Figure 3: Examples of the distribution of the functipnand its
isovalued contours for Topology Matching: (a) sphere, (b) cube,
(c) torus and (d) cylinder.

Figure 4: Example of a deformed shape showing distribution of the
functionp

This section describes how to calculate the functiq(v) and con-
gStruct the MRG in practice. Here, we focus on constructing the
MRG from a triangle mesh (or polyhedron mesh) because meshes
are the most common method for representing 3D shapes. Further, a
mesh can generally be easily converted to and from other represen-

than a thresholg as shown in Figurg]5.
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Figure 6: Generation of short-cut edges

Figure 7: Example of bases of geodesic distance and the area of the Figure 8: Construction of a Multiresolutional Reeb Graph

bases

vq IS only inserted (or reinserted) iNWLIST at Step 4 ifg(va)

is less than a threshold and, if VLIST is empty at Step 5, an
arbitrary unvisited vertex is selected as a nigwand the proce-
dure is repeated by inserting it inldL1ST. Here,area(b;) is
calculated based on the area of faces composed of vertices whose
distance fromb; is less tharr. If the threshold- is smaller, more
vertices are selected d%;}. An increase in the number of base

Further, special edges called “short-cut edges” may need to be
added to the mesh. If edges of a mesh are uniform in a certain
direction, the accuracy of the calculation;efv) is biased, and re-
sults in an inaccurate calculation pf,(v). Therefore, short-cut
edges are introduced to modify the uniformity by making the di-

rections of edges isotropic. Figur¢ 6 illustrates the algorithm for . ! :
adding a short-cut edge. First, the trianglest> andts which are vertices allows a more exact calculationydfv) but requires much

adjacent to the triangle. are unfolded on the plane of. New more computation time. In our implementation, we found that an

edges are then generated between each of the vertex pairs but only = 1/0.005 - area(S) generates about 150 base vertices and
if an edge is inside the unfolded polygos (u1 — v1 — u2 — achieves sufficient accuracy. An example{®f} andarea(b;)
v — uz — v3 >) and has not been previously generated. In Fig- is shown in Figurd |7 where the black points on the surface are
ure[§, the new edges are shown by green and red lines and include{; } and the colored areas correspond to the occupied domains of
(v1,v2), (v2,v3), (v1,us), (v2,u1) and(vs, usz). In this example, area(by).
an edge is not added betweér, v1) since it would be outside Finally, the functioru., (v) is calculated by normalizing(v) as
the unfolded polygon. The length of a generated edge is the Eu-described in section 3 above.
clidian distance between the corresponding vertices in the unfolded
domain. 4.2 Construction of the Multiresolutional Reeb
After the vertex resampling and short-cut edge generation, the Graph
geodesic distance of each vertex from a base vertex is calculated

using Dijkstra’s algorithm and a binary tr&&l.1 ST where the ver-  After the calculation ofu, (v), the Multiresolutional Reeb Graph
tices are sorted in ascendant ordep of). (MRG) is constructed. The construction of an MRG is illustrated

in Figure[. In this case, a height function is used as the fungtion
on a 2D triangle mesh for convenience of explanation. The process
Dijkstra’s Algorithm for Geodesic Distance: is similar when using geodesic distance as the fungti@am a 3D
shape. We first define the following notation:

Step 1: Initialize g(v) = oo about all vertices.
Step 2: Select a base vertéx setg(b) = 0, and inserbto VLIST.

Step 3: Take the vertexv which has smallesgy(v) in VLIST and
remove it fromVLIST.

Step 4: For each vertex, adjacent ta, if g(v) + length(v,vq) <

R-node: A node in an MRG. The red, green and blue circles in
Figure[$ are R-nodes, with different colors representing dif-
ferent resolution levels.

R-edge: An edge connecting R-nodes in an MRG. The thick black
g(va), updateg(ve) = g(v) + length(v,vq) and insert (or Ill?rfl?)(;re]s':(l)%lﬁjriﬁf:ei?'eirteré?s-;ﬂ%gis An R-edge can also connect
reinsertyv, to V LIST. Notice that the adjacency of vertices |s ’
determined by edges, including short-cut ones. T-set: A connected component of triangles in a region. One T-set

Step 5: Repeat Step 3 and 4 until LIST is empty. corresponds to one R-node (see subsection 2.2).

un-range: A range of the function,, concerning an R-node or a

T-set. For example, the,-range ofn, is [0.5,0.75) in Figure

Equation (1) is then discretely approximated by i
p(v) = Z g(v,b;) - area(b;) The construction of the MRG begins with the construction of a
p Reeb graph having the finest resolution desired. This Reeb graph
is constructed by first dividing the domain of the functiep into
where{b;} = {bo, b1, ...} are the base vertices for Dijkstra’s algo- K pun-ranges, thatisro = [0, %),71 = [+, %), ...Tk-1 =
rithm which are scattered almost equally on the surfacerea(b;) [£=1,1). The fineness of the resolution is determined by the
is the area thati; occupies, and |, area(b;) equalsarea(S), the number ofy,-rangesK. In Figure[§ (a), the domain is divided
whole area of the surfacg. In our procedure{b;} are selected into 4 p,-ranges, that is;o = [0,0.25), 1 = [0.25,0.5),

using the above Dijkstra’s algorithm with two small modifications: r, = [0.5,0.75) andrs = [0.75, 1).



Second, any triangles lying over the boundaries oftheanges
are subdivided so that every triangle belongs to only ppeange
as shown in Figurg]8 (b). The position of an inserted vertex is cal-
culated by interpolating the positions of the relevant two vertices in
the same proportion as their value.of (v). For example, as shown
in Figure[3 (c), when the triangle composedvef v2 andvs is di-
vided by the boundary.,(v) = 0.75, a new vertex,, is inserted
as follows:

01 (tn (V2) = pn (V2)) 4 V2 (pn (V1) = pn (v2))
pn (V1) — pin (v2)

Vg =

wherep, (vs) = 0.75.

Thirdly, the T-sets (connected components of triangles) are cal-
culated in eachu,-range, and an R-node is created for each T-set
as shown in Figurg]8 (d).

Fourthly, if two T-sets between adjacent,-ranges are con-

nected, corresponding R-nodes are connected by an R-edge as

shown in FiguréB (e). This completes the construction of the finest
resolution Reeb graph.

Next, the Multiresolutional Reeb Graph (MRG) is constructed
from the finest resolution Reeb graph by using Property 3 of the
MRG as described in subsection 2.2. That is, the MRG is con-
structed in fine-to-coarse order by unifying adjacent R-nodes while
maintaining their parent-child relationships as shown in Figlfes 8
(e) — () — (9), wherens is the parent ofno, n1}, ne is the par-
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Figure 9: Overview of the matching algorithm

The similarity between two R-nodes andn is defined as the
similarity between their attributessim(m, 7). The similarity is
defined such that it satisfies the following conditions:

@)
(4)

0 < sim(m, n) < sim(m, m)

Z sim(m,m) = 1.

meR

ent of {n} etc. While Figur¢ B shows only the R-edges connecting i.e., sim(m, n) is largest when an R-node is matched with itself
R-nodes of the same resolution, there are also R-edges connectin nd the sum of similarities is 1 if all R-nodes in an MRGmatch
R-nodes of different resolutions that are also calculated at this time. (Nemselves.

Specifically, the R-edg&@u1, n6), (n1, n7), (n2, ns) and(ns, ns)
are generated by the connectivities at the boungary) = 0.5.

4.3 Computational Cost for Constructing the Mul-
tiresolutional Reeb Graph

When constructing the MRG, Dijkstra’s algorithm takes
O(VlogV) cost whereV is the vertex count in the mesh
because the size of the binary tlé&. 15T is O(V'), each insertion

to (or removal from)VV LIST takesO(log V') cost, and there are
O(V) iterations. Constructing the T-sets (R-nodes) and connectiv-
ities (R-edges) take® (V') cost because it is achieved by simply

calculating the connected component of the triangles. Therefore,

Dijkstra’s algorithm is predominant in the overall computational
time. In practice, it occupies approximately 90% of the whole.

According to our experiments, using 150 base vertices for Dijk-
stra’s algorithm gives a sufficient approximation. In this case, an
MRG for a mesh of 10,000 vertices can be calculated in approxi-
mately 15 seconds with a Pentium || 400MHz processor.

5 Matching Algorithm
5.1 Overview

This subsection gives an overview of how similarity is calculated
using MRGs.

First, for each R-noden, we compute its attribute, callegh.
The attributen is initially calculated at the finest resolution using

the area and the length of the T-set corresponding to the given R-
node as defined below in subsection 5.4, however, more generally,

we compute

@)

MZEE
c

wherec is the child R-node of the R-node. Thus, the attribute of
m is the sum of the attributes of the childrenaf

Then, the similaritySIM (R, S) between MRGSR and S can
be defined as follows:

SIM(R,S)= > sim(m,n),

meER,NES

thatis,SIM (R, S) is the similarity for a given set of R-node pairs
{(mo,mn0), (Mm1,n1), ...}, and it takes a value betwefh 1] with a
larger value indicating that the MRGs are more similar. The def-
inition of sim is described in more detail below in section 5.4.
Further, because each MRG forms a graph structure, the R-node
pairs must also preserve the topological consistency of these graph
structures. Therefore, the problem is reduced to finding the R-node
pairs that provide the largest value ®f M (R, S) while maintain-

ing topological consistency. To avoid a combinatorial explosion of
NP-complexity, in Topology Matching we calculate the similarity
using a coarse-to-fine strategy and maintain a list of the R-nodes,
NLIST, and a list of matching R-node paits[ PAIR.

Matching Algorithm:

Step 1:(Initialization) Insert the coarsest R-nodes of two MR®&s
andSto NLIST.

Step 2:(Matching) In NLIST, find a matching R-node paim €
R,n € S) which preserves the topological consistency of the
MRG. At the coarsest level, this matching is trivial. The detailed
process is described in subsection 5.3.

Step 3:(Unpacking) Removem and n from NLIST and insert
(m,n) to MPAIR. Then, if not at the finest resolution, insert
the child R-nodes ofn andnto NLIST.

Step 4:(Loop) If NLIST is notempty, repeat Step 2 and Step 3. O
erwise, calculat& T M (R, S) usingsim(m, i) for each element]
in M PAIR. The calculation okim(m, n) is described in sub-
section 5.4.

th-

Figure[9 shows an example of the matching algorithm. In Figure
(a), the two R-nodes, andn, are inserted tavV LIST (i.e. the



nodes that are not matched yet. Once the R-node is matched, the
M LIST is unnecessary because it is not used again.

5.3 Finding the Matching of R-node Pairs

This subsection describes how to find the R-node pairs to be
matched, which is the core procedure in the matching algorithm.
First, in NLIST, the R-noden whosesim(m, m) is the max-
imum in NLIST is selected as the one side of the matching pair.
Thus, the R-node that affects the final result the most is selected.
Second, using the two rules of topological consistency, the can-
didate R-nodes which could matehare selected. That is, a candi-
date has the same,-range asn, its parent must match's parent,
and itsM LIST must be equal to that ofi. Of course, the candi-
date must also belong to a different MRG than
If there is no candidate which can mateh m is removed from
(@) (b) NLIST, but nothing is inserted td/ PAIR or NLIST, and a
matching label is not propagated becausés not matched. The
process then returns and repeats the matching steps from the begin-
ning.
R-nodes at the coarsest level in the MR%Gand S respectively). If there are candidates that can maieh one R-noden is se-
In Figure@ (b),(mo,no) are matched and are thus unpacked to lected from among the candidates using the matching function
their child R-nodesrt, ma, n1 andns) which are inserted into ~ mat(m,n) (described below) which takes a larger value when
NLIST. In the next iteration(mz, n») are matched and then un-  there is a better matcfm, n). Finally, the matching R-node pair
packed as shown in Figufé 9 (c), and then in a following iteration (m,7) (or (n, m)) is returned as the result.
(ma, ns) are matched and unpacked as shown in Figlire 9 (d). Note
that while theNLIST_ is simply the list of the R_-nodes, Figuré 9 Definition of Matching Function  mat(in, 7i)
also shows the associated R-edges for convenience of explanation.
The matching functionnat(m, @) is defined by considering two
5.2 Topological Consistency of the Multiresolu- aspects of similarity. We first introduce the functiosss(im, )
’ . which represents a measure of how the final similarity is decreased
tional Reeb Graph by the matchingm, n).

matching X

Figure 10: Propagation of a matching label

It is clear that nodes in different ‘branches’ of the Reeb graph 1
should not be matched in order to preserve the topological con-  loss(m, @) = ={sim(m, m) + sim(fi, )} — sim(m,7)
sistency of the MRGs. The following two rules are introduced to 2
ensure that topological consistency is preserved.

The first rule is that the R-nodes can be matched only if they

are in the samg,,-range and their parents are matched. The latter o graph structure) into account. Lefj([s,t),m) be the set of

condition is, however, not applied to the coarsest R-nodes becauses_nqdes adjacent tor whose.,,-ranges ards, t). The attribute
they do not have a parent. This rule is based on the fact thatthe adj([s, ), m) is then defined a.:follows e
ranges of two R-nodes are generally the same if they correspond to®® %> *)> 7 :

the same parts of an object. Fig[ife 9 (d) shows an example in which

A largerloss(m, ) means a smaller similarity.
We must also definenat(m, ) taking adjacent R-nodes (i.e.

the R-nodes are displayed with thgis-range.ms can match only adj([s,t),m) = Z a.
with ng becausens andng have the samg,,-range|0.75, 0.875), acadj([s,t),m)
and their parentsn, andns are matched. Notice thats would
not match any child ofis becausen, (the parent ofns) did not Thus, we may definewat(m, nn) as follows:
matchn.
The second rule is that R-nodes can only be matched if their mat(m,n) = —loss(m,n)
MLISTs are the same, whefd LIST is a list of the matching B Zl (@dj([s, 1), m), adj([s,t), n))
labels propagated to that R-node. This rule avoids the matching 055La@ils, ), m), aq (s, 1), n
of nodes in different branches. For example, consider a case of a [s:t)
matching between MR@ and S as shown in Figurg 10(a) where  Here, we limit thexdj([s, t), m) to the R-nodes itV LI ST in order
the nodegmo, no) are matched and we label the matchiXig to reduce the computational cost.

After the matchingX, m, can be matched with eithen or ns
if the first rule is satisfied although the latter is incorrect. In order 54 R-node Attribute and Similarity
to avoid this inconsistency, the matching labélis propagated as
shown by the dotted arrows in Figyirg 10(b), so that m2, n1 and In Topology Matching, the attribut& of the R-noden consists of
no are distinguished. That isz; can match,, but cannot match two parameters; i.em = (a(m), I(m)). These parametergm)
no becauseX is propagated tan; andng, butis not propagatedto  andl(m) are the ratios of the area and the length of the R-nade
n2. The second rule is implemented by providing each R-node with in the whole object, respectively. While other parameters such as
the matching listM LIST. In every matching, the matching label  color can also be considered, we introdu¢e:) andi(m) as major
is propagated in the direction of a monotonic increase or decreaseparameters because they can be easily and stably calculated for any

about theu,,-range (i.e. X is not propagated to, andn in Fig- mesh. Their definitions are as follows:
ure[I0(b)), and is appended to the approprigf& /ST's. Thus,
R-nodes can only be matched if th@if L1.ST's are the same. a(m): Let area(m) be the area of the T-set correspondingio

Note that thelM/ LI ST only needs to be maintained for the R- area(S) be the whole area of the obje§t andrnum be the
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Figure 11: Sensitivity at region boundaries

resolution number in the MRG. Theam) is defined as

1 area(m)

area(S)’

a(m) rnum

where —L_ is introduced because the relevant part of the
object is held by (or incorporated impum R-nodes, each at
different resolution levels.

I(m): Letlen(m) be the “length” of the R-nodeu:
len(m) = max(m) — min(m)

wheremin(m) andmax(m) are the minimum and maximum
of un(v) in m. Note thatmin(m) andmax(m) are not al-
ways equal to thg,.-range; i.e.,s < min(m) < max(m) <
t when thep,-range is[s,t). Thel(m) is defined using
len(m):

1 len(m)
rnum Y len(n)

wheren are the R-nodes of the finest resolution.

l(m)

As described in subsection 5.1, the parameigrs) andi(m)

Figure 12: Correspondence between two frogs

One way that has been considered to avoid this problem is to
adaptively partition theu,,-region based on the positions of crit-
ical points, however, this may cause an unexpected partitioning.
We propose another strategy in which an R-nedés allowed to
match a set of R-nodegno, n1, ...} simultaneously if all the R-
nodese {no,n1, ...} are adjacent to the same R-node. For exam-
ple, in Figur;»m can match{n1, n2} simultaneously because
n1 andng are adjacent to the same R-nadg In this case, there
are three candidates which can matety i.e.,n1, n2 and{ni, na}.

The attribute ofn1,n2} is calculated by

are first calculated as above at the finest resolution and used to cal-
culate the attributes of the R-nodes at the finest resolution. The
attributes for R-nodes at coarser levels are then calculated using
equation (2) above. For this purpose, the addition of attributes is
defined by

{nl,ng} =n1 + no.

6 Experiments of Similarity Estimation

n+n = l l . . .
m+ 7 = (a(m) + a(n), i(m) + 1(n)) In order to test the Topology Matching method, experiments were
Notably,(m) at a coarse resolution can be regarded as a parameteconducted to test the efficiency and accuracy of this new search

representing the complexity of the graph occupiedrbpecause a key. The experiment_s mao!e use of 230 different polyhedral meshes
largeri(m) means thain is responsible for more R-nodes at the ~Selected from the Viewpoint moddfs the 3DCAFE free stuff}
finest resolution. Stanford University datas@tand our original data. The computer
We define the similarity between two attributes as a linear com- Uséd was an Intel Pentium |1 400 MHz processor with the Linux op-
bination ofa(m) andl(m). eratl_ng syst_em. Throughout the experlment_s, the resplutlon qf the
Multiresolutional Reeb Graph (MRG) was 7; i.e., an object (region)
sim(m, 71) = w - min(a(m), a(n)) is divided into 64u,-ranges at the finest resolution. The weight pa-
(1 — w) - min(l(m), ! rameter used was = 0.5 to control the weight of the,(m) and
’ I(m) parameters in theim(m, i) calculation.

(n)

wherew (0 < w < 1) controls the weighting of the area and length 6.1 Correspondence between Two Models

parameters, antchin(z, y) returns the smaller value. Notice that
sim(m, ) defined in this way satisfies equations (3) and (4) above.

In the procedure of similarity estimation, there is an automatic cal-
culation of which parts in a model correspond with parts in the other
model. Figurg T2 shows some corresponding parts in models of a
frog. The red parts represent T-sets whose R-nodes are matched. It
can be seen that they are matched despite the deformation. Notice

5.5 Matching ata u,-Region Boundary

One remaining issue is that the structure of an MRG is sensitive

to the placement of the region boundaries of the functign Fig-

ure[T] shows an example in which almost the same objects results

in different MRGs due to slight differences in the locations of the
region boundaries.

that legs on opposite sides may also be matched because whether a

Lhttp://www.viewpoint.com
2hitp://www.3dcafe.com
Shttp://www-graphics.stanford.edu/data/3Dscanrep
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Figure 13: Objects used in the matching experiment
(e)
Table 1: Results of the matching experiment
wetey | (@ () (¢) () (e) (f)
(@) || 22998 | 1.00 0.98 0.73 0.73 0.68 0.66
(b) || 22998 | 0.98 1.00 0.71 0.72 0.67 0.65 () -
(c) || 32328 | 0.73 0.71 1.00 0.94 0.74 0.75 1.00 0.78 0.76 0.58 0.56

(d) 4041 | 0.73 0.72 0.94 1.00 0.76 0.76
(e) || 34835| 0.68 0.67 0.74 0.761.00 0.95
® 8709 | 0.66 0.65 0.75 0.760.95 1.00

Figure 14: Results of the search experiment

[E shows a similarity matrix for all 230 models, with the horizon-
tal and vertical lines showing division into 32 categories. A higher

) ) o similarity is displayed as a blacker dot, and a similarity of less than
T-set is on the left or right cannot be distinguished by the MRG at .75 is displayed as entirely white. We believe that the results agree

this time. well with general human intuition.
The time required for the calculation of similarity between a
6.2 Matching Experiment model and the other 230 models varied fraszc. to 37sec., with

] ] ] . an average of abouRsec., i.e., on average, it took only05sec. to
A matching experiment was conducted using the six models shown ca|culate one similarity. The computation time depends on the R-
in Figure[13. The mesh paifga),(b)}, {(c).(d)} and{(e).()} rep-  node count in the MRG. When calculating the similarity between
resent the same objects, but mesh (b) was generated by rotatingpmRGs R and.S whose R-node counts afe and N, respectively,
translating and scaling (Euclidean transformations) mesh (a), meshthe computation cost i©(M - (M + N)) whenM < N, because

(d) is a simplified model of mesh (c), and mesh (f) is a simpli- each matching propagates its matching labelfor N R-nodes,
fied model of mesh (e) with added noise and subject to a Euclideanang there are at modt/ matchings. In our experiments, a sphere

transformation. The numbers of vertices in each mesh and the re-has the minimum R-node coufit(equal to the resolution number)
sults of the calculated similarities are listed in TdHle 1. The results and provides the fastest search timeleéc. The object with the
show that Topology Matching can accurately identify objects even maximum R-node count is shown in Figirg 14 (f). There are ap-
when the connectivities have been changed (simplification), noise proximately2, 000 R-nodes, providing the slowest search time of
has been added, or there have been Euclidean transformations.  37s¢c. The average R-node count is approximatlg, providing

the average search time tsec.
6.3 Search Experiment

Lastly, we also performed a more general experiment to search for / Conclusions

an object from among all 230 mesh models. In this case, the MRGs

for each of the 230 meshes were constructed in advance. In con-In this paper, we presented a new technique called Topology Match-
ducting the search, one model is selected from the 230 models, theing for the accurate, efficient, and automatic calculation of similar-

similarities between it and the other models are calculated, and theity and correspondence between 3D shapes.

models are sorted according to the resulting similarity. Some exam- A Multiresolutional Reeb Graph (MRG) constructed based on

ple results of the experiment are shown in Fidure 14. The selectedgeodesic distance is used as a key to measuring similarity. The
model is shown as the key and the models returned with the high- MRG can be constructed for any type of polyhedral mesh, includ-

est similarities are shown under searched objects. All the objectsing non-orientable (such as Klein's bottle), non-closed and non-

in Figure[I4 are different models; i.e., they are not the result of a manifold surfaces. The similarity is calculated with a coarse-to-fine

rotation, translation or scaling as in subsection 6.2 above. Figure strategy using the attributes of R-nodes in the MRG and preserving
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Figure 15: Similarity matrix

topological consistency. Our experiments indicate that Topology which a functiory, can be defined and the functiprcan be chosen

Matching provides a fast and efficient computation of the similarity for the particular object involved. For example, the height func-

and correspondence between shapes and provides results that agreé®n may be appropriate asfor terrain data or objects constructed

well with human intuition. from cross sections, or density may be appropriatg & volu-
Topology Matching can be used in various applications in which metric data. We envision and encourage the extension of Topology

efficient estimation of similarity is important. For example, 3D Maching to various areas.

shape search for modeling, automatic searches for 3D shapes

through the Internet, 3D shape catalogs in electronic commerce,ACkn0W|edgement

searching surfaces generated from medical images and may even

be used as one of the descriptors for a search key in MPEG7.  \we wish to express gratitude to Monolith Co., Ltd. for continu-
Currently, the MRG does not cover full geometric information oysly supporting our work. Thanks are extended to the members

for an object, as seen in Figire| 12. This aspect was intentionally left of Shinagawa Laboratory for suggestions and discussions. Thanks

out in order to avoid the troublesome processing required for pose 5re also extended to the SIGGRAPH reviewers for their valuable

estimation. In the future, Topology Matching may be expanded for comments. Finally, we would like to thank Mr. Neil Henderson for
applications such as morphing or pose estimation by adding addi- egiting of this paper.

tional geometric information or a means for user intervention to
clarify the correspondence information between shapes.
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